scattering layer - определение. Что такое scattering layer
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое scattering layer - определение

PHENOMENON IN QUANTUM FIELD THEORY
Møller Scattering; Möller scattering; Moller scattering; Moeller scattering; Moller Scattering

Deep scattering layer         
  • Time lapse video of a 3-D mapping of water column sonar data by the NOAA research ship ''[[Okeanos Explorer]]'' in the North Atlantic Ocean<ref name=NOAA>[https://www.ngdc.noaa.gov/mgg/wcd/ Water Column Sonar Data] National Geophysical Data Center, NOAA.</ref>
LAYER IN THE OCEAN CONSISTING OF A VARIETY OF MARINE ANIMALS THAT MIGRATE VERTICALLY EVERY DAY
Phantom bottom; Deep Scattering Layer; Deep-scattering layer; Sound scattering layer
The deep scattering layer, sometimes referred to as the sound scattering layer, is a layer in the ocean consisting of a variety of marine animals. It was discovered through the use of sonar, as ships found a layer that scattered the sound and was thus sometimes mistaken for the seabed.
Layer by layer         
  • An overview of the layer by layer method for Rubik's Cube. The cube has been turned over in the third step.
METHOD OF SOLVING THE RUBIK'S CUBE
Layer-by-Layer
Layer-by-layer (LbL) deposition is a thin film fabrication technique. The films are formed by depositing alternating layers of oppositely charged materials with wash steps in between.
Layer by Layer         
  • An overview of the layer by layer method for Rubik's Cube. The cube has been turned over in the third step.
METHOD OF SOLVING THE RUBIK'S CUBE
Layer-by-Layer
The Layer by Layer method, also known as the Beginners method is a method of solving the 3x3x3 Rubik's Cube. Many beginners' methods use this approach, and it also forms the basis of the CFOP speedcubing technique.

Википедия

Møller scattering

Møller scattering is the name given to electron-electron scattering in quantum field theory, named after the Danish physicist Christian Møller. The electron interaction that is idealized in Møller scattering forms the theoretical basis of many familiar phenomena such as the repulsion of electrons in the helium atom. While formerly many particle colliders were designed specifically for electron-electron collisions, more recently electron-positron colliders have become more common. Nevertheless, Møller scattering remains a paradigmatic process within the theory of particle interactions.

We can express this process in the usual notation, often used in particle physics:

In quantum electrodynamics, there are two tree-level Feynman diagrams describing the process: a t-channel diagram in which the electrons exchange a photon and a similar u-channel diagram. Crossing symmetry, one of the tricks often used to evaluate Feynman diagrams, in this case implies that Møller scattering should have the same cross section as Bhabha scattering (electron-positron scattering).

In the electroweak theory the process is instead described by four tree-level diagrams: the two from QED and an identical pair in which a Z boson is exchanged instead of a photon. The weak force is purely left-handed, but the weak and electromagnetic forces mix into the particles we observe. The photon is symmetric by construction, but the Z boson prefers left-handed particles to right-handed particles. Thus the cross sections for left-handed electrons and right-handed differ. The difference was first noticed by the Russian physicist Yakov Zel'dovich in 1959, but at the time he believed the parity violating asymmetry (a few hundred parts per billion) was too small to be observed. This parity violating asymmetry can be measured by firing a polarized beam of electrons through an unpolarized electron target (liquid hydrogen, for instance), as was done by an experiment at the Stanford Linear Accelerator Center, SLAC-E158. The asymmetry in Møller scattering is

where me is the electron mass, E the energy of the incoming electron (in the reference frame of the other electron), G F {\displaystyle G_{\rm {F}}} is Fermi's constant, α {\displaystyle \alpha } is the fine structure constant, Θ cm {\displaystyle \Theta _{\text{cm}}} is the scattering angle in the center of mass frame, and θ W {\displaystyle \theta _{\rm {W}}} is the weak mixing angle, also known as the Weinberg angle.